Generalization of Garsia’s Expansion Formula for Top to Random Shuffles

نویسنده

  • Roger Tian
چکیده

In the top to random shuffle, the first a cards are removed from a deck of n cards 12 . . . n and then inserted back into the deck. This action can be studied by treating the top to random shuffle as an element Ba of the algebra Q(Sn). For a = 1, Adriano Garsia in “On the Powers of Top to Random Shuffling” (2002) derived an expansion formula for B 1 for k ≤ n, though his proof for the formula was non-bijective. We provide a bijective proof of Garsia’s expansion formula, which will in addition allow us to improve upon this formula to arbitrary k. Afterward, we generalize Garsia’s formula, providing an expansion formula for B a . Résumé. Dans le “du-haut-au-hasard shuffle”, les a premières cartes sont retirées d’un jeu de n cartes 12 · · ·n pour ensuite les ré-insérer. Cette action peut être étudiée en traitant le “du-haut-au-hasard shuffle” comme un élément Ba de l’algébre Q(Sn). Adriano Garsia dans “On the Powers of Top to Random Shuffling” (2002) donne une formule valide pour B 1 avec k ≤ n. Cependant, sa preuve est non bijective. Nous donnons une preuve bijective de ce résultat le généralisant à k quelconque. Enfin, nous élargirons la formule de Garsia à B a .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of Garsia’s Formula

Notice that Bk a is a sum of terms σ1σ2 . . . σk where σi ∈ Sn is a term of the ith copy of Ba. Each σi will be called an a-shuffle, because it shuffles the first a cards back into the deck. We can thus denote σi = (b(i−1)a+1, b(i−1)a+2, . . . , bia) where b(i−1)a+m = σi(m) (i.e. σi acted on the mth card of the deck). Thus, the sequence (σ1, . . . , σk) gives rise to the ka-tuple (b1, b2, . . ....

متن کامل

Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D

Let Bt(n) be the number of set partitions of a set of size t into at most n parts and let B′ t(n) be the number of set partitions of {1, . . . , t} into at most n parts such that no part contains both 1 and t or both i and i+ 1 for any i ∈ {1, . . . , t− 1}. We give two new combinatorial interpretations of the numbers Bt(n) and B ′ t(n) using sequences of random-to-top shuffles, and sequences o...

متن کامل

Analysis of Top to Bottom - K Shuffles 3

A deck of n cards is shuffled by repeatedly moving the top card to one of the bottom kn positions uniformly at random. We give upper and lower bounds on the total variation mixing time for this shuffle as kn ranges from a constant to n. We also consider a symmetric variant of this shuffle in which at each step either the top card is randomly inserted into the bottom kn positions or a random car...

متن کامل

Finite Markov Chains and the Top-to-random Shuffle

In this paper, I present an introduction to Markov chains, basic tools to analyze them, and an example, the top-to-random shuffle. I cover the existence and uniqueness of stationary distributions, the Convergence Theorem, total variation distance, mixing time, and strong stationary times. Using these tools, I show that the top-to-random shuffle on a deck of n cards mixes the deck in approximate...

متن کامل

The Solutions to Elmsley’s Problem

We give a formula for the optimal sequence of perfect shuffles to bring a card at position p to the top (or indeed, to any position). This solves a fifty-year-old problem of Elmsley. The argument illustrates elementary group theory and shows how a simple card trick can lead to the edge of what is known.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013